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ABSTRACT

We present a novel method of composing piano pieces with
Grammatical Evolution. A grammar is designed to define
a search space for melodies consisting of notes, chords,
turns and arpeggios. This space is searched using a fit-
ness function based on the calculation of the Zipf’s distri-
bution of a number of pitch and duration attributes within
the given melodies. In this way, we can create melodies
without specifying a key or time signature. We can then
create simple accompanying bass parts to repeat under the
melody. This bass part is evolved using a grammar created
from the evolved treble line with a fitness based on Zipf’s
distribution of the harmonic relationship between the tre-
ble and bass parts. From an analysis of the system we con-
clude that the designed grammar and the construction of
the compositions from the final population of melodies is
more influential on the musicality of the resultant compo-
sitions than the use of the Zipf’s metrics.

1. INTRODUCTION

Music composition is a complex, aesthetic process. In re-
cent years many composers, musicologists and computer
scientists have looked to machine learning, autonomous
methods of creating music either in conjunction with, or
instead of the traditional human composer. We present one
such study in which we employ an Evolutionary Computa-
tion (EC) method, namely Grammatical Evolution (GE) in
the composition of piano pieces.

GE [1, 2] offers a versatile way of accessing and search-
ing through a problem while taking advantage of problem
domain knowledge. GE has been shown to be effective at
a wide range of creative tasks including pylon and truss
design, navigation in computer games and graphical logo
design [3–6]. EC methods in general are not determinis-
tic; a solution is rarely determined outright but rather ap-
proached from a number of locations. This makes them
particularly suitable to aesthetic problems such as musical
composition — composition is not a linear, deterministic
process, but a combination of decisions that, once started,
would be unlikely to end up in the same position twice.
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This paper discusses the representations, grammars and fit-
ness functions that we use to employ GE as an autonomous
composer of piano pieces.

The following section details some previous experiments
in using EC methods to compose music. Section 3 intro-
duces Grammatical Evolution and gives a background the
Zipf’s Law power distribution used throughout this study.
Section 4 details the workings of the experiment: the gram-
mar used, the fitness measured and the manner in which we
create an accompanying bass part. Section 5 presents and
discusses and number of the melodies created by the sys-
tem. Some conclusions and future work are proposed in
Section 6.

2. PREVIOUS WORK

A number of previous studies have employed EC tech-
niques for melodic composition. One of the most suc-
cessful and well-known applications is GenJam [7] which
uses a Genetic Algorithm (GA) to evolve jazz solos. This
system has been modified and developed into a real-time,
MIDI-based, interactive improvisation system that is regu-
larly used in live performances in mainstream venues [8].
A modified GA was used in GeNotator [9] to manipulate a
musical composition using a hierarchical grammar. Göksu
et al. evolved and evaluated both melody and rhythm sep-
arately using MLPs [10]. These evolved melodies were
then mixed to produce verses and whole songs. Dahlstedt
developed a system that implements recursively described
binary trees as genetic representation for the evolution of
musical scores. The recursive mechanism of this represen-
tation allowed the generation of expressive performances
and gestures along with musical notation [11].

GE was first used for musical composition by de la Puente
et al [12]. They tested the use of GE to generate melodies
for a specific processor but did not present or discuss the
melodies produced. More recently GE has been imple-
mented for composing short melodies in [13]. From four
experimental setups of varying fitness functions and gram-
mars they determined that users preferred melodies cre-
ated with a structured grammar. GE was again employed
for musical composition using the Wii remote for a gen-
erative, virtual system entitled Jive [14]. This system in-
teractively modifies a combination of sequences to create
melodic pieces of musical interest.

Most of the above methods employ Interactive EC (IEC)
methods, whereby a human observer is used within the fit-
ness function. While a human observer is ideal for mak-
ing subjective judgments on aesthetic processes such as art
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and music, IEC is extremely costly. In the proposed exper-
iments we avoid IEC and instead opt for an autonomous
evaluation of the individuals based on Zipf’s Laws.

Zipf’s Law has been used in the investigation of pleas-
antness in music [15] and has been used previously as a
fitness function in EC [16]. Zipf’s Law relates to the fre-
quency of occurrence of events and has been shown to turn
up in many aspects of nature [17]. Formally, Zipf’s Law
states:

P (f) ∼ 1/fn (1)

where P(f) is the probability of an event whose ranked fre-
quency of occurrence is f and where n is close to 1. The
number of occurrences are noted for each type of event.
These occurrences are plotted against their statistical rank
on a log-log scale. For an ideal Zipf’s distribution we ex-
pect all points to fall on a straight line with a slope of -1.
The R2 value is a measure of how much the given points
conform to this line, ranging from 0 to 1 with 1 denoting a
straight (ideal) line. In order to calculate the Zipf’s fitness
for an attribute within a given individual (melody), we cal-
culate the slope and R2 of the rank-frequency distribution
of this attribute and compare it to these ideal values.

The contribution of this study to the field of algorithmic
composition lies in the exploitation of GE’s capabilities
to use grammars in representing and manipulating musical
phrases. We use the population aspect of GE to combine
multiple highly fit individuals together. We then use a two-
run process where the first run evolved a treble melody, a
new grammar is dynamically created in response to it, and
then the second run uses this grammar to evolve an accom-
panying bass line. At the end of the study, we examine the
resultant melodies in relation to each of the aspects used in
creating them.

3. GRAMMATICAL EVOLUTION

GE is a grammar based algorithm based on Darwin’s the-
ory of evolution. As with other evolutionary algorithms,
the benefit of GE as a search process results from it’s op-
eration on a population of solutions rather than a single
solution. From an initial population of random genotypes,
GE performs a series of operations such as selection, muta-
tion and crossover over a number of generations to search
for the optimal solution to a given problem. A grammar is
used to map each genotype to a phenotype that can repre-
sent the problem under investigation. The success or ‘fit-
ness’ of each individual can then be assessed as a measure
of how well this phenotype solves the problem. Successful
or highly fit individuals reproduce and survive to succes-
sive generations while weaker individuals can be weaned
out. Such grammar-based generative methods can be par-
ticularly suitable to generating music as it is a genome
that is being manipulated rather than the piece of music
itself. This allows the method to generate an output with a
level of complexity far greater than the original input. This
added complexity generation is helpful in creating inter-
esting and diverse pieces of music. In the experiments pro-
posed in this paper, the grammar defines the search domain
— the allowed notes and musical events in each composi-

Figure 1: Overview of GE Process.

tion. Successful melodies are then chosen by traversing
this search space according to the defined fitness function.

The creative capabilities of GE come from the choices
offered within the mapping of the grammar. The gram-
mars in GE are used to map the genotype to the phenotype
and are often in Backus-Naur Form (BNF). Typically, the
genome is represented by a combination of integers known
as codons. These codons select the particular rule for a
given expression according to the mod value from the num-
ber of choices for that rule.

Rule = (Codon Integer Value)mod(# of choices) (2)

Using this we can introduce biases to our grammar by in-
cluding multiple instances for preferred choices. For ex-
ample, operand, depicted in Equation 3 offers three choices,
two of which are choice1. Thus there is a 2:1 bias towards
the selection of choice1 over choice2. We make use of such
biases in our experiments to incorporate our knowledge of
the musical domain into the designed grammar.

<operand>:: = <choice1> | <choice1> | <choice2> (3)

We exploit the representational capabilities of GE result-
ing from the design of a grammar that defines the given
search domain. GE maps the genotype to a phenotype —
typically some form of program code. This phenotype can
then be interpreted by the user in a predetermined manner.
In these experiments, the programs created are written in
a command language based on integer strings to represent
sequences of MIDI notes. We design a grammar to create
this command language which is in turn used to play mu-
sic. An overview of the GE process including the mapping
of the grammar to MIDI notes is shown in Figure 1.

4. METHOD

This section describes the methods used in composing the
piano melodies that accompany this paper.

4.1 Grammar

The BNF grammar, shown below, maps the genotype (in-
teger codon) to a series of musical events entitled notes,
chords, runs, turns and arpeggios to create a musical repre-
sentation. These events are re-written to numerical values
that comprise a command language (series of integers) that
is interpreted as individual MIDI notes.



<piece>::=<event>|<piece><event>
|<piece><event><event>
|<piece><event><event><event>

<event>::=111,<style>,<oct>,<pitch>,<dur>,

<style>::=100|100|100|100|100|100|100|100
|50,<chord>|50,<chord>|50,<chord>
|50,<chord>|70,<turn>,100 | 80,<arp>,100

<chord>::=<int>,0,0|<int>,<int>,0
|12,0,0|<int>,0,0|<int>,0,0|<int>,0,0
|<int>,<int>,<int>

<turn>::=<dir>,<len>,<dir>,<len>,<stepD>
<arp>::=<dir>,<int>,<dir>,<int>,<ArpDur>

<int>::=3|4|5|7|5|5|7|7
<len>::=<step>|<step>,<step>
|<step>,<step>,<step>
|<step>,<step>,<step>,<step>
|<step>,<step>,<step>

<dir>::=45|55
<step>::=1|1|1|1|1|2|2|2|2|2|2|2|2|3
<stepD>::=1|2|2|2|2|2|2|4|4|4|4|4|4
<ArpDur>::=2|2|2|4|4|4|4|4|8|8
<oct>::=3|4|4|4|4|5|5|5|5|6|6
<pitch>::=0|1|2|3|4|5|6|7|8|9|10|11
<dur>::=1|1|1|2|2|2|4|4|4|8|8|16|16|32

The first line creates a melody <piece> from either a
single note <event> or a concatenation of note events.
The inclusion of extra <event> in this first line encour-
ages expansion of the phenotype. Each <event> starts
with the indicator 111 and has the descriptors <style>,
<oct>, <pitch> and <dur>. Each descriptor is mapped
by the grammar in relation to what it represents. Pitch is
simply a value between 0 and 11 chosen with equal prob-
ability to indicate which of the 12 pitches in the chromatic
scale. Octave refers to the octave number the current event
starts in and is limited to 3-6 for these experiments with a
bias towards 4 and 5. Each note is assigned a specific du-
ration ranging from a demisemiquaver (value 1) to a semi-
breve (value 32). As with the octave descriptor, a bias is
introduced to encourage shorter notes within the melodies
with notes shorter than a quaver (value 4) given more in-
stances and hence higher preference over longer minim and
semibreve notes.

The type of event determined by <style> can be a plain
note denoted by 100, a chord (50), a turn (70) or an arpeg-
gio (80). This grammar has a strong bias towards including
more notes and chords as they take less time to play but can
be more pivotal to the overall piece than turns. A plain note
requires no further information than the octave, pitch and
duration already assigned to it and so requires no further
grammar. A chord (50) is defined by the pitch and dura-
tion already specified and the inclusion of either one, two
or three notes played in conjunction with it.

Both turn (70) and arp (80) result in a series of notes
played in sequence. The direction up or down is chosen at
the beginning and again halfway through the turn. As the
second choice of direction is independent from the first,
this grammar will produce a run (both directions the same)
50% of the time, resulting in no need for a separate gram-
mar line for runs. The length of each section of the turn
is one, two, three or four notes with a bias towards three.
Each step size within the turn is either one or two semi-

Table 1: Attributes measured from a given individual

Name Description
Pitch pitch class (value 1-12)
Dur duration
Pitch-Dur pitch*duration
Pitch-Dist distance between instances

of a given pitch
Pitch Int pitch interval from each note

to the next
Pitch Bigram pitch distance between suc-

cessive intervals

tones, with the occasional allowance of three. The duration
of the step is limited to either semiquavers or quavers. An
arpeggio is created in a similar manner.

4.2 Fitness Function

Once the grammar has mapped to the phenotype, the fit-
ness function is called to evaluate the given individual ac-
cording to a defined fitness measure. We give each indi-
vidual an initial fitness based on the duration of the melody
produced. We aim for a melody of duration of 300 but with
a tolerance of 30. If the duration is within this tolerance the
initial fitness is set to 1, else the initial fitness is calculated
as the absolute value of the difference from the duration
to 300 and the tolerance, plus 1. The addition of the con-
stant 1 is to prevent a fitness of zero as this initial fitness
is now adjusted by multiplication according to the Zipf’s
distribution of a number of attributes.

The final fitness of the individual is measured in relation
to the distance in vector space of the Zipf’s distribution
of each of the measures shown in Table 1. These partic-
ular attributes, a subset of those used in previous experi-
ments [15, 16], were chosen as they are most suited to the
representation and methods used in this study. Measures
related to the absolute pitch value were not incorporated as
the grammar already controls a bias towards the use of cer-
tain octaves. Hence the term ‘pitch’ in these measures re-
lates merely to the pitch class (value 1-12). Likewise we do
not consider the fractal measures used in previous studies
as the original duration of the pieces in these experiments
is so short.

4.3 Melody Construction

The above grammar and fitness measurement create very
short melodies. In order to create longer compositions
we concatenate fit individuals from the final generation to-
gether. We can implement this by exploiting the fact that
GE produces a population of fit individuals. In the final
generation a number of the most fit individuals should be
quite similar as they share common highly fit traits. Thus
if we play the best individuals together we expect similar
melody snippets or motifs to emerge. Previous studies in
using EC for algorithmic composition have used the entire
population and generations of populations in creating a sin-
gle melody [18,19]. Due to the large diversity within our fi-
nal population, discussed in the next section, we only con-



sider a small number of top individuals for inclusion in the
final composition. A number of melodies accompany this
paper displaying varying degrees of repetition and varia-
tion on a theme. Each of these longer melodies were cre-
ated by concatenating the four top individuals from the fi-
nal generation together.

4.4 Bass Accompaniment

Conventional piano music generally consists of two sepa-
rate parts, treble and bass. Thus as an extra experiment we
use a two-stage GE run that uses the best individual from
the treble run to create a new grammar to compose an ac-
companying bass line.

Although no tonality has been enforced on the melody,
the Zipf’s metrics used will cause certain pitches to be
played more frequently than others. Thus without pre-
defining a key signature we can encourage a bass accom-
paniment to sound tonally similar to this melody by ensur-
ing the bass exhibits the same pitch biases as the treble.
We can control this effectively using our GE composition
system by creating a new grammar for the bass which is
derived from the evolved treble line. In this way we can
ensure that only pitches already used within the piece will
be considered when composing an accompaniment.

We create the grammar file for the bass part once the best
individual for the treble has been found. This grammar
file is created with initial predetermined lines to specify
allowed note duration and octave. Only plain notes and
chords are allowed in the bass grammar. The line of the
grammar that defines the allowed pitches is created from an
ordered list of pitches in the treble line. From this we create
a list of pitches available to the bass that includes the top
notes from the melody four times, the next two notes three
times, the following two notes twice and includes the sixth,
seventh and eight most frequent note once. This creates a
bias within the bass towards the pitches most frequently
used within the melody. For example if the most frequent
pitches in the treble melody were A, C, F#, G, D, E, D#
and C#, in decreasing frequency, the line:

<pitch>::=9|9|9|9|0|0|0|6|6|6|7|7|2|2|4|3|1

would be added to the predefined grammar, completing the
grammar for the GE to evolve the bass accompaniment.

The bass grammar considers the tonality of the treble and
bass parts but it does not take into account the progression
or timing between the two. A simple method to create an
accompanying line is to create one bass part that repeats
underneath all four similar melodies. To achieve this we
must be more strict in the duration of the treble melody
evolved; if we want the accompanying bass to repeat twice
under each melody individual we must ensure each bass
individual is exactly half the duration of the treble. Thus
we re-run the experiment again with a target duration of
128 for the treble, 64 for the bass and zero tolerance for
both parts. As a duration of 1 represents a demisemiqua-
ver, a duration of 32 could represent one bar in 4/4 time.
Hence we can consider the melody to be of length four bars
and the bass to be of length two, although the duration of
individual bar lengths is not enforced.

To measure the fitness of the bass individual we again
consider a Zipf’s distribution, but this time on the har-
monic relationship between the pitches in this bass and the
melody it is accompanying. To consider the harmonic pro-
gression between the two parts we must examine the rela-
tionship between each pair of notes at every time-step. To
examine this we expand out the pitch line for both the tre-
ble and bass so that we have a value at each instance (each
moment of duration 1). For example, if there is a crotchet
(duration 8) played at D (pitch 2) we represent this with a
list of 8 values of 2. This results in two lists, one for treble
and one for bass that indicate the pitch of each line at every
moment of duration. In the case of a chord, only the root
note of the chord is considered. We then subtract the bass
from the treble list to create a list of intervals. As we are
only considering pitch values within an octave, this results
in a negative value should the pitch value of the bass be
higher than that of the treble. We correct this by adding a
value of 12 when this occurs.

We then categorise the resultant interval list into a list
of rankings according to standard Western tonality. These
rankings indicate how consonant or dissonant an interval
is, with 0 being the most consonant (least dissonant) and 12
being the most dissonant (least consonant). From this list
of rankings (which is already sorted), we can then enforce
a Zipf’s distribution and adjust the fitness in accordance to
the deviation from this distribution as per the treble part.

The system described is implemented in python using
PonyGE https://code.google.com/p/ponyge/.
Details of the experiments run are given in the following
section.

5. COMPOSITIONS

The experiments were run with a population of 200 for
50 generations. All other parameters were left to the de-
fault settings in PonyGE: the mutation coefficient was set
to 0.01, crossover was set to 0.7 and there was an elite size
of 1. Each experiment was run with a minimising fitness
function whereby zero is the ideal fitness.

A selection of melodies created by this system are avail-
able at http://ncra.ucd.ie/Site/loughranr/
smc_2015.html. In this section we discuss the creation
of the melodies in relation to fitness evolution, the Zipf’s
distributions, variety in the final generation and the cre-
ation of an accompanying bass part.

5.1 Short Melodies

5.1.1 Fitness Evolution

The progress of any evolutionary run is best examined by
observing the progress of the average and best solution in
successive generations across multiple runs. Figure 2 dis-
plays the average versus best fitness across 30 evolutionary
runs for the creation of the melody line. We note that the
fitness is calculated directly but the natural log is shown for
illustrative purposes. It is evident from this graph that on
average a near optimal fitness can be found after about 30
generations. In contrast to this, the average fitness remains
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Figure 2: Average vs. Best Fitness over 50 generations
average over 30 runs.

Table 2: Zipfs measurements from individual melody at-
tributes. Numbers in parenthesis indicate the ideal values.

Attribute Slope (-1) R2(1) Fit (0)
Pitch -1.01 0.94 0.07

Duration -1.1 0.98 0.13
PitchDur -1.0 0.95 0.06
Interval -1.0 0.93 0.07

PitchDist -1.0 0.91 0.08
Bigram -1.02 0.95 0.08

quite high. This implies that after 50 generations the pop-
ulation is still very diverse. We consider the reason for this
diversity later, but first we examine an individual melody
in terms of the fitness attributes measured.

ShortMelody is the best evolved individual across all runs
with a final fitness of 0.49. This melody contains all melodic
events the grammar is capable of producing — single notes,
chords, turns, runs and arpeggios. The evolution of each
of the attributes is shown in Figure 3. These plots show
the progression of the slope and R2 for each of the six
measured attributes for the best and median individual in
each generation, measured by fitness. As expected the best
value approaches the ideal for each value quickly whereas
the median values show much more variation. It should
be noted that the median value at generation 1 tends to be
zero. This is because the first generation have many very
weak individuals (more than half the population) that are
very short resulting that the median’s initial fitness is too
weak to be adjusted using Zipf measurements. This vari-
ety with the median values across the generations show that
while the best fitness is easily met, the population remains
diverse in relation to each of the fitness attributes.

5.1.2 Zipf’s Distribution

Figure 4 displays the distribution of each of the six at-
tributes measured from ShortMelody in relation to the Zipf’s
ideal. These plots clearly illustrate that the points converge
to a straight line with a negative slope. For a closer in-
spection Table 2 displays the the specific values from these
plots for slope, R2 and attribute fitness. Despite the small
number of points on these graphs, they do indicate that the
attributes display Zipf-like distribution with each of their
slopes approaching the ideal of -1 and R2 approximating
the ideal of 1.
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Figure 3: Evolution of attributes for most fit melody

5.1.3 Final Generation

Figure 2 shows that after 50 generations there is still a large
difference between the average and best fitness in a popu-
lation, indicating that the final population is still very di-
verse. To determine why this may be, we examine the indi-
viduals within the final population of an evolutionary run.
Figure 5 shows the fitness values within the final popula-
tion. These show that over 50% of the population do have
very low (good) fitness. The distance between the average
and the best is caused by a small number of very weak in-
dividuals that drag the average up. Examining the lengths
in the final population indicate that a similar number of in-
dividuals have very short durations. As the initial fitness is
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Figure 4: Attribute distributions for most fit melody. The
red line indicates the Zipf’s ideal distributions.
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Figure 5: Overall Fitness Values in final generation.

based on length, a short duration will dramatically increase
the fitness, thus a small number of short melodies will al-
ter the average fitness of that generation. Similarly, we can
examine individual attribute fitness measures within the fi-
nal generation. Again we find that the attributes approach
ideal values for those individuals with low fitness but devi-
ate from the ideal in weaker individuals in the population.
The attribute that shows most deviation is duration. This is
unsurprising as the addition or removal of a single turn can
significantly alter the instances of a given duration. Even
so, Figure 5 clearly shows that there are a large number of
melodies with a very good fitness, hence we can be con-
fident in our choice of the single best or make use of a
combination of the best as described in the following sec-
tion.

5.2 Composite Melodies

Eight composite melodies accompany this paper display-
ing varying degrees of repetition and variation on a theme.
Each of these longer melodies were created by concatenat-
ing the four top individuals from the final generation to-

Figure 6: Theme emergent in Melody4.mp3

gether. Melody4.mp3 offers an interesting motif emerging
within the middle of each individual. This motif is notated
in Figure 6. Similar themes can be heard to emerge in the
other melodies. These motifs or themes ground the compo-
sitions giving them a sense of oneness and modularity. The
emergent themes can vary in length; Melody6.mp3 can be
heard to root itself in a long F# both at the middle and
end of each individual giving a very repetitive flow to the
melody. Each melody presented displays the events pro-
duced by the grammar in terms of runs, chords and arpeg-
gios, they all display some level of modularity through rep-
etition of motifs but they are all very distinct from one an-
other. Although Melody1, Melody2 and Melody3 result in
the best fitness, the authors found Melody4 and Melody5
to be more pleasing to the ear. This raises questions as to
how much merit we should attach to fitness measures such
as these — the fitness function can be used to traverse the
search space but it did not necessarily lead to the ‘best’
melody.

5.3 Bass Accompaniment

Although some of the melodies, such as that illustrated
in Figure 6 are written on both staves, it is a single part
melody that is evolved. We ran the experiment again to
create both treble and bass parts producing three compo-
sitions as described in Section 4.4. In each of these com-
positions we can hear a repetitive bass part underlying the
melody. In Accompany1 and Accompany2 these do not
quite fall in time with the upper line, but the fact that they
are of strict durations (bass 64, treble 128) keeps the two
parts together in a cyclical manner. Accompany3 offers a
much more syncopated accompaniment that compliments
the treble melody more pleasantly.

A notable, if somewhat obvious, point to make is that
it is much more difficult to compose two accompanying
lines. One method around this would be to co-evolve the
two parts together, although we find something unnatural
about this. While there are exceptions where two melodies
are composed together, in general when we think of an ac-
companying line, it is just that: a new part that is written to
complement another already composed melody. We have
avoided specifying key or time signatures through these ex-
periments, instead opting for ranking and statistical mea-
sures to control the content. We feel that this may work
well between lines in regards to pitch, as we can constantly
measure the harmonic distance between two accompany-
ing parts, but the temporal nature of music gives rise to
difficulty when considering rhythm. The repeating mea-
sure reported here serves it’s function but we acknowledge
that it is very limiting. In future work we hope to inves-



0.0 0.5 1.0 1.5 2.0 2.5
0.5

0.0

0.5

1.0

1.5

2.0

2.5
Pitches

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.0

0.5

1.0

1.5

2.0

2.5
Duration

Figure 7: Distribution of the Pitch and Duration attributes
in a melody created with a simple Grammar

tigate better methods of creating melodies that temporally
and rhythmically complement one another.

5.4 Compositional Elements

The compositions created by this system are largely due to
three distinct processes:

1. Representation created by the grammar

2. The Duration and Zipf’s Law Fitness Function

3. Repetition of motifs from concatenation of individ-
uals

To determine the significance of each of these aspects, we
reran the experiment with varying combinations of each
aspect and examined the output. BasicGram1 and Basic-
Gram2 are created using a grammar that only allowed sin-
gle notes. BasicFit1 and BasicFit2 are evolved with a fit-
ness function that was targeted solely on the length of the
melody, disregarding any Zipf-based measurements. Short-
Melody is the single best individual evolved, but is not con-
catenated with any other individuals from the population.

5.4.1 BasicGram

From listening to the melodies created using the basic gram-
mar, it is clear that these are less interesting, less engaging
and less pleasant than those created with the more involved
grammar. Nevertheless, these BasicGram melodies have
equally good (or even better) fitness as our other composite
melodies according to our defined fitness function. Figure
7 displays the Zipf’s distributions for the pitch and dura-
tion attributes for BasicGram1. As expected, these display
typical Zipf’s distributions with slopes of -0.99 and -1.02.
This demonstrates that we need more than a good statisti-
cal fitness measure to create a good melody.

5.4.2 BasicFit

BasicFit1 and BasicFit2 were evolved using the full gram-
mar but with a minimal fitness function that only measured
the duration of the piece. Thus the best fitness of 1 was
reached very quickly, within five generations. Although
they were not taken into account during evolution, we cal-
culated the Zipf’s distribution for each attribute used in the
rest of the experiments. A plot of distribution for the pitch
and duration are shown in Figure 8. Although these may
initially appear to portray a Zipf-like distribution, a closer
analysis shows that the slope for the Pitch and Duration at-
tributes are -0.7 and -1.7 respectively. Similarly, the slopes
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Figure 8: Distribution of the Pitch and Duration attributes
in a melody created with a simple Fitness

of the distributions for the pitch-duration, intervals, pitch-
distance and bigram attributes were -0.52, -0.58, -0.89 and
-0.81. Nevertheless, from listening to these melodies, we
find them to be more interesting than those evolved using
just the basic grammar.

5.4.3 Short Melody

As discussed in the fitness results, ShortMelody is the best
individual found throughout our evolutionary run. It dis-
plays all of the compositional elements from the grammar
– notes, turns and chords — and it exhibits very accu-
rate Zipf’s distribution on each of the measured attributes.
Melody1 is the concatenation of this melody with the next
top three individuals from the final generation of that run.
From listening to both it is evident that the longer concate-
nated melody is more pleasing and offers more structure
than the original short melody on it’s own. This aspect of
emergent motifs due to repetition is even more evident in
other compositions such as Melody4. The degree of repe-
tition is related to the similarity between the selected indi-
viduals. In some final generations the top individuals are
all very similar giving a high degree of repetition and mu-
sical motifs. In other experiments, one or more of the top
individuals differ significantly yet have similar fitness. As
the concatenation of individuals is one of the most effec-
tive methods for creating musicality with this system, we
plan to explore this process further with a view to using a
similarity measure between individuals as a means of con-
catenating them into one composition.

Overall, we found that the grammar and representation
used in these experimented in combination with the con-
catenation of a number of highly fit individuals have had
a more pleasing aesthetic result in the creation of musi-
cal compositions than the use of the Zipf’s based fitness.
We encourage the reader to evaluate these for themselves,
but the authors concurred that in regards to musicality, the
melodies created using the full system 1 are much more
pleasant to the ear than those from a single individual or
those that do not make use of the full grammar. Evolution
is driven by the fitness function used, so it is our conclu-
sion that future work should be focussed on finding a more
beneficial and musical way of measuring this fitness.

6. CONCLUSIONS

We have composed a series of piano compositions with
Grammatical Evolution driven by a Zipf’s Distribution of

1 in particular we enjoyed Melody4, Melody5 and Accompany3



a variety of compositional attributes. A notable issue with
the compositions produced is that they lack overall form.
We would like to continue this work to develop the pro-
gression of the pieces to include a distinctive beginning,
middle and end and ideally follow some discernible tra-
jectory as the piece develops. We plan to develope future
versions of this system with a better fitness function. Al-
though Zipf’s distribution of the attributes measured have
been shown in previous literature to correlate with musical
pleasantness, we did not find them to be the most important
aspect in creating an interesting composition. Instead we
found that exploiting GE’s use of grammar and concatenat-
ing similar but not identical individuals together was more
important in the musicality of the result.

While Section 5 offers details and results showing the
workings of the experiments run, the best measure of a
compositional system is in judging it’s musical output. In-
herently, this is an aesthetic judgement and it is one that is
not easily defined or quantified. Nevertheless, the authors
find merit in the compositions produced. We acknowledge
that there is a lack of form to the compositions, and that
there is notable room for improvement in using the system
to create two part melodies. However, as a new system
incorporating GE with new grammars and representation
it offers worth as a compositional aid; it can create origi-
nal musical ideas that could be utilised and modified by a
human musician in the creation of a larger composition.
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